Energy decay of a variable-coefficient wave equation with memory type acoustic boundary conditions
نویسندگان
چکیده
منابع مشابه
Energy Decay Rate for the Kirchhoff Type Wave Equation with Acoustic Boundary
In this paper, we study uniform exponential stabilization of the vibrations of the Kirchhoff type wave equation with acoustic boundary in a bounded domain in Rn. To stabilize the system, we incorporate separately, the passive viscous damping in the model as like Gannesh C. Gorain [1]. Energy decay rate is obtained by the exponential stability of solutions by using multiplier technique.
متن کاملUniform Decay Rates of Solutions to a Nonlinear Wave Equation with Boundary Condition of Memory Type
In this article we study the hyperbolic problem (1) where R is a bounded region in Rn whose boundary is partitioned into disjoint sets ro, rl. We prove that the dissipation given by the memory term is strong enough to assure exponential (or polynomial) decay provided the relaxation function also decays exponentially (or polynomially). In both cases the solution decays with the same rate of the ...
متن کاملStabilization of the wave equation with variable coefficients and boundary condition of memory type
We consider the stabilization of the wave equation with space variable coefficients in a bounded region with a smooth boundary, subject to Dirichlet boundary conditions on one part of the boundary and linear or nonlinear dissipative boundary conditions of memory type on the remainder part of the boundary. Our stabilization results are mainly based on the use of differential geometry arguments, ...
متن کاملEnergy decay of dissipative plate equations with memory-type boundary conditions
In this paper we consider a plate equation with internal feedback and viscoelastic damping localized on a part of the boundary. Without imposing restrictive assumptions on the time-dependent frictional damping, we establish an explicit and general decay rate result that allows a wider class of relaxation functions and generalizes previous results existing in the literature.
متن کاملDecay Rate for a Viscoelastic Equation with Strong Damping and Acoustic Boundary Conditions
This paper is concerned with a nonlinear viscoelastic equation with strong damping: ( ) ( ) 0 , d 0, t t tt tt t u u u u g t s u x s s u ρ − ∆ − ∆ + − ∆ − ∆ = ∫ . The objective of the present paper is to provide some results on the long-time behavior to this equation with acoustic boundary conditions. By using the assumptions on the relaxation function due to Tatar [1], we show an arbitrary rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2016
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2015.09.039